Jump to content

Matematika


robopol

Recommended Posts

O rôznych témach, oblastiach matematiky, problémoch príkladoch.

Niečo málo k teorii čísiel:

- malá Fermatova veta: https://robopol.sk/blog/mala-fermatova-veta-prvocisla-5-diel

- vylepšená Fermatova veta: https://robopol.sk/blog/vylepsene-hladanie-prvocisiel2diel

-Riemanova hypoteza: https://robopol.sk/blog/prvocisla-riemannova-hypoteza-2-diel

-Pseudoprvočísla: https://robopol.sk/blog/prvocisla-golden-part

- Špeciálne prvočísla:https://robopol.sk/blog/specialne-prvocisla

- najväčšie prvočísla: https://robopol.sk/blog/najvacsie-prvocisla

- Mobiova funkcia. Eulerova veta a funkcia: https://robopol.sk/blog/eulerova-veta-a-funkcia-möbiova-funkcia

 

 

  • Thanks 1
Link to post
Share on other sites
  • Replies 85
  • Created
  • Last Reply

Top Posters In This Topic

  • robopol

    52

  • Tono

    29

  • electric blue

    2

  • game

    2

Top Posters In This Topic

Popular Posts

O rôznych témach, oblastiach matematiky, problémoch príkladoch. Niečo málo k teorii čísiel: - malá Fermatova veta: https://robopol.sk/blog/mala-fermatova-veta-prvocisla-5-diel - vylepše

Tak, ale musite uznat, že to je elegatne vyhldanie nie? To prve uvedene Mersennovo číslo ma 2-3 miliony číslic. Ta rovnica plati pre kazde Mersenovo prvočíslo, napr. 2^34=2147483647  (Nasiel

No ved ano, kazdy píše o niečom inom :) Tato tu uvdená rovnica na rozdiel od Drakeovej funguje skvele :) článok o periódach prvočísiel: https://robopol.sk/blog/very-fast-algoritmus-na-prvoci

Posted Images

Diferenciálne rovnice popisujúce fyzikálne zákony majú obyčajne riešenie v tvare exponenciálnej funkcie o základe e, čo je Eulerovo číslo. Gaussove rozdelenie (ktoré sa dá vyjadriť súčinom, ktorý som odvodil v: https://drive.google.com/file/d/1uXLa6ZX0oA6zwWlfgl6wJgvHGn9pU5N-/view ) je tiež exponenciálna funkcia o základe e a predstavuje hustotu pravdepodobnosti, podľa ktorej sa riadi väčšina štatistických javov, vrátane kvantovej mechaniky. Minkowského metrika je hyperbolickou metrikou, teda opäť exponenciálna funkcia o základe e. Každá exponenciálna funkcia o inom základe, než e (napríklad o základe z) sa dá prepísať podľa vzťahu z^u=e^(u.ln(z)). Všetky harmonické funkcie typu sin{phi}, cos{phi}|, sú obecne funkciou exp(i.Phi} a Fourierovým rozvojom sa dá popísať aj diskrétna funkcia. Je iracionálne číslo e „magické číslo“ ? Číslo e sa dá vyjadriť, ako nekonečný súčet https://cs.wikipedia.org/wiki/Eulerovo_číslo Faktoriál v menovateli je typický pre kombinácie. Fyzikálne zákony, ktoré sa popisujú exponenciálnou funkciou by sa teda dali celkom dobre interpretovať, ako pravdepodobnosť  štatistických javov. Podobne ako Boltzmanovo rozdelenie. Je to samozrejme interpretácia „pritiahnutá za vlasy“, ale nijako neprotirečí matematickej definícii pravdepodobnosti závislých javov, kde výsledná pravdepodobnosť je súčtom pravdepodobností jednotlivých javov. Eulerovo číslo sa dá napísať aj  ako nekonečný súčin. V štatistike sa to dá interpretovať, ako súčin pravdepodobností nekonečného množstva závislých javov.

Link to post
Share on other sites

Na tom probléme Riemanovej hypoteze je pekná ta elegantnosť a geometrické aspekty zeta funkcie v oblasti komplexných čísiel, pekne sa to prelína so súčtami nekonečných radov (aj od Ramumadzana). Rokyta nie je odbornik na tieto veci, mne sa páčia napr. videa z rôznych oblasti, velmi názorne podané:

https://www.youtube.com/c/3blue1brown

Naozaj dobrá stránka, potom ešte:

Mathloger

https://www.youtube.com/channel/UC1_uAIS3r8Vu6JjXWvastJg

Ten odvodeny vztah vyzera dobre, teda si našiel súvislost... Aj niečo iné si s tým robil?

Eulerovo číslo sa najčastejšie vysvetluje pri úročení v banke. Samozrejme toto úročenie nie je len o peniazoch a vyskytuje sa v prírode velmi často v inom kontexte.

Link to post
Share on other sites

Zaujalo ma, prečo sa dá e vyjadriť súčasne nekonečným súčinom, ale aj súčtom. Výsledná pravdepodobnosť štatisticky nezávislých javov je súčinom pravdepodobností  a štatisticky závislých javov je súčtom pravdepodobností. Štatisticky závislé javy sú napríklad, keď ťaháme guľôčky z klobúka a nevraciame ich späť, takže nasledujúca pravdepodobnosť závisí od predchádzajúceho výberu. Pre štatisticky nezávislé javy platí, že po vytiahnutí guľôčky ju znovu hodíme do klobúka. Typickým príkladom nezávislého javu je pravdepodobnosť pri hode kockou. Pre závislé je to napríklad obsadenie kvantových hladín. Ak máme nekonečný počet guliek, tak pravdepodobnosť nezávislých javov sa musí rovnať pravdepodobnosti závislých javov. Preto by sa e, ako štatistická interpretácia, malo dať vyjadriť zároveň nekonečným súčtom, ale aj súčinom. To je ale naozaj iba sci-fy interpretácia.

Link to post
Share on other sites
pred hodinou, robopol napísal:

Ten odvodeny vztah vyzera dobre, teda si našiel súvislost... Aj niečo iné si s tým robil?

Nie, teraz ma zaujal model šírenia infekcie a nejak ma to "pohltilo". K tomu vzťahu som sa dostal pri hľadaní kombinácií pri infekcii. Ja viem, že ty to pokladáš, vzhľadom na chaotické správanie, za zbytočnosť. Ale dostal som už iné výsledky a neplatí už to moje 50% infikovaných. SIR model nerešpektuje priestorové súradnice. Takže riešiť by sa to malo parciálnymi diff. rovnicami, ktoré vedú na vlnové funkcie v priestore a čase. Červená sú senzitívni, žltá, uzdravení, zelená infikovaní. To je iba priebeh pravdepodobnosti, konkrétny počet je integrál cez plochu danej oblasti (krajiny, regiónu).a hustotu populácie v danej oblasti.  

sim03.gif

Link to post
Share on other sites
pred 59 minútami, Tono napísal:

Zaujalo ma, prečo sa dá e vyjadriť súčasne nekonečným súčinom, ale aj súčtom. Výsledná pravdepodobnosť štatisticky nezávislých javov je súčinom pravdepodobností  a štatisticky závislých javov je súčtom pravdepodobností. Štatisticky závislé javy sú napríklad, keď ťaháme guľôčky z klobúka a nevraciame ich späť, takže nasledujúca pravdepodobnosť závisí od predchádzajúceho výberu. Pre štatisticky nezávislé javy platí, že po vytiahnutí guľôčky ju znovu hodíme do klobúka. Typickým príkladom nezávislého javu je pravdepodobnosť pri hode kockou. Pre závislé je to napríklad obsadenie kvantových hladín. Ak máme nekonečný počet guliek, tak pravdepodobnosť nezávislých javov sa musí rovnať pravdepodobnosti závislých javov. Preto by sa e, ako štatistická interpretácia, malo dať vyjadriť zároveň nekonečným súčtom, ale aj súčinom. To je ale naozaj iba sci-fy interpretácia.

Nemyslím, že to je nejake scify, zrejme by to šlo, vyjadrit to ako súčin. To, čo píšeš je úzko prepojené, teda ten vztah, čo si sem dal. Aj spomenuty Ramanudžan ma take rôzne vztahy pre rozne funkcie.

Link to post
Share on other sites

Ja som dnes trocha zobecnil Eulerovu vetu, problem je ten, že zatial nemam algoritmus pre ine zaklady, len pre a=2, predpokladám, že to však suvisí s tým či je to štvorcové číslo, alebo obdlžnikove. Aj ked všetky rovnice funguju, nechce sa mi už hladat dalšie zovšeobecnenia, hladat ine algoritmy, tak aspon volačo: (modulárna aritmetika)

 

reduced Euler theorem.jpg

Eamples_reduced Euler theorem.jpg

Link to post
Share on other sites

tak nakoniec som si dal trocha prace a zovšeobecnil som to elegatne aj pre ine zvyšky, aj pre párne čísla. Članok bude čoskoro (tu to pridavat už nebudem). Dokonca som si istý, že to bude fungovat aj pri iných základoch.

Link to post
Share on other sites

Bolo by zaujímavé reálne porovnať tvoj algoritmus a s iným. Máš aj funkčný program? Pre reálne RSA kryptovanie sa dnes vyberajú prvočísla s viac ako  500 miestami. Predpokladám, že existuje dostupný zoznam takýchto prvočísiel. Neviem, v čom je vlastne pri kryptovaní problém? Prvočísla s viac ako 500 miestami zaručujú, že prelomenie na bežnom dostupnom HW dnes trvá príliš dlho. To by ale nemal byť problém, ani keby sa HW v budúcnosti zdokonalil. Vybrané prvočísla v RSA sa predsa môžu dynamicky meniť v krátkom čase, teda podstatne kratšom, ako čas potrebný na ich prelomenie.    

Link to post
Share on other sites

K prvočíslam, Tono takto: Ja som vylepšil malu Fermatovu vetu, ty znižujes efektívne základ algoritmom, zároveň algoritmus preveruje dĺžku periódy, zistil som periody prvočísiel, našiel som špecialne prvočísla (do ktorých spadajú aj Mersenove), ktoré viem vyhľadať určite efektívnejšie ako stávajúce algoritmy. Viem algoritmom účinne odfiltrovať psedoprvočísla. To nie je hypotéza, to je realita.

Neskúšal som to napr. v c++, pretože mne nejde o rýchlosť, ide mi o zákonitosti. No dovolím si tvrdiť, že táto metóda je účinnejšia.

A zobecnil som aj Eulera, nový článok na stránke obsahuje algoritmus, možeš pozrieť (dúfam, že tam nie je chyba).

V budúcnosti sa chystám pozriet ci nejde o podobny algoritmus (súvislosti) s Mobiovou funkciou, resp. Eulerovou. Ta sa priamo použiva pri výpočte (riemannova hypotéza) o počte prvočísiel základ je x/ln x+ta mobiova funkcia. To je riemanova funkcia. Teda ak je to prepojene, dá sa dokázať toto prepojenie.

Link to post
Share on other sites

Hľadanie prvočísla pomocou Fermatovej vety je algoritmus na pár riadkov. Podstata je samozrejme nájsť efektívnejší algoritmus, čo sa ti zrejme podarilo. No efektívnejších algoritmov je viac. Aspoň, čo som bežne na nete našiel. Nie som v tejto oblasti odborník, takže ich neviem posúdiť. No pracovať s číslami so stovkami cifier, by v c++ nefungovalo a treba k tomu nejaké knižnice. Zbežne som pri goglovaní našiel odkaz http://shimi.webzdarma.cz/vyzkum/faktorizace/bak2.pdf , kde sa spomínajú knižnice GPM (nečítal som to celé), to by chcelo sa tomu hlbšie venovať. Je to ale oblasť matematiky, ktorá má okamžitú záruku komerčného využitia, takže by malo pre teba zmysel sa tomu venovať. Ak si presvedčený, že tvoja metóda je účinnejšia, vynaložené úsilie by sa ti vrátilo. A testom to môžeš ľahko dokázať- Skutočne (komerčne) presvedčivý test je však iba reálny test algoritmu na počítači tak, ako ho robili v odkaze.

Ale ako matematický algoritmus je to zaujímavé.  

Link to post
Share on other sites

No vidis, mam tam aj príklad na tie špecialne prvočísla, Mersenove, ak by si urobil ten algoritmus s kniznicami, mozes si ho preverit sam :) Ale s nim by si mohol preverit este vacšie čísla, tu nemam pochybnosti, že to je otazka par minut pre bezny pc, viem, že to niekto rátal pár dni (tie velké čísla).

Nejde o moje presvedčenie, ved skus a uvidíš sám, ved z tých vztahov v článku špecialne prvočísla je jasne, že tu je využita kratka perioda prvočísla. To nemôže byť inak, keby si to ratal klasickými algoritmami tak to na pc ani nezvladnes.

No a skus sa zamysliet:

Ten Milerov algoritmus je založený na Fermatovej vete, lenže on ndeokáže určiť, či je to prvočíslo alebo pseudoprvočíslo.(musí preverovat iné základy, aby zvýšil pravdepodobnosť). Algoritmus uvedeny na blogu sa odrazi od hoc akej hodnoty, ktorú vies a postupuješ, ak najdeš kratšiu periodu, je jasne, že to prvočíslo nie je. na druhej strane si nerobil nic zbytočne, lebo si znížil aj mocninu, ktorú môžeš vyratat klasicky, to nema žiaden algoritmus. Ine pracujú ešte menej účinne ako ten Milerov test.

na druhej strane aj keby som teraz tu vyriesil čokolvek, dal to na web, kolko ludí myslís, že to aspon prečíta? Ja nejdem s nikym bojovat o prvenstva, komernč využitie atd.

Ak chceš môžeš urobit nejaký zdroják (ak sa ti chce), potom to prihlasime do sutaže o hladanie najvačšieho prvočísla, je to naozaj len otazka toho rozširiť nejaké knižnice.

Link to post
Share on other sites
pred 15 minútami, robopol napísal:

Nejde o moje presvedčenie, ved skus a uvidíš sám, ved z tých vztahov v článku špecialne prvočísla je jasne, že tu je využita kratka perioda prvočísla. To nemôže byť inak, keby si to ratal klasickými algoritmami tak to na pc ani nezvladnes.

 

Nie je podstatné, či ti verím ja. Musel by si presvedčiť ľudí, ktorí sa tým profesionálne zaoberajú. Inak to robíš iba pre vlastné potešenie. A bolo by škoda, keby to zostalo iba na tvojom blogu. Keď to využije niekto iný, bude ta to mrzieť. 

Link to post
Share on other sites

Ved ako píšem, ja nie som profesionál v programovaní a nejdem to naozaj nijak riešiť, pre mňa je podstatné, že to funguje. Naozaj ti ponúkam sa zabavit tým, že urobíš niečo, čo funguje, naprogramuješ to a môžeš s tým robit čokolvek, akurat, že spomenieš autora metody. Škoda je všeličoho, ale ja fakt nemám chuť teraz robiť nejaké promo a marketing, aby sa dozvedel niekto o tom. Môžeš poslať (pošleme) funkčný program na test a výsledky a nech si s tým robia, čo chcu. Ja nie som z ich akademického prostredia ani ich nebudem "otravovat", že aha čo sa da.

Link to post
Share on other sites

Ak chceš vymyýslim ti aj algoritmy na patterny pre obchodného cestujúceho + nejakú optimalizačnú metódu (existujúcu) a bude to neprekonatelne s tým, čo je dnes. To je ako keby si napr. metódu simulovaného žihania umocnil na 100 v efektivite

Link to post
Share on other sites
pred 4 hodinami, robopol napísal:

Ved ako píšem, ja nie som profesionál v programovaní..

Ale veď si ten tvoj algoritmus už napísal. Tak ho prepíš do Pascalu (pre malé čísla), aby sa dal  skompilovať a otestovať . Ja ho prepíšem a otestujem v čase pre veľké čísla. Pre zaujímavosť som testoval najbližšie prvočíslo po n=1000!. Je to prvočíslo:

402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001283

výpočet trval na mojom  PC zhruba 1 minútu.

 

Link to post
Share on other sites
pred 8 minútami, robopol napísal:

pre male to mam otestovane (výpočet je rýchly), mersenove čísla nemam, tam treba tu knižnicu

Netreba knižnicu, pošli mi program, ktorý sa dá skompilovať, na ktorom si to testoval.

Link to post
Share on other sites

ja som to testoval iba v excely pre male čisla nebolo treba program, algoritmus predsa mas, to je jedno v akom jazyku to je napisane. Ja neviem, čo robíš, tie špecialne prvočísla?

Ak ide o špecialne prvočísla algoritmus je ešte jednoduchší.

Link to post
Share on other sites

No ale prepísať to do Pascalu by nemal byť problém. Na to netreba byť programátor. Veď si to už takmer napísal, len to treba vyskúšať. Pascal je zadarmo a je to len pár riadkov, skús to.

Link to post
Share on other sites

a čím si testoval to uvedene prvočíslo, ide o aký druh algoritmu? Ja viem, že netreba byt programator, ale ako ti píšem, mna nejak netrapi rýchlost výpočtu, mne šlo o to, či je metóda funkčná + špecialne prvočísla sa dajú neuveritelne rýchlo vyhľadať, majú krátku periódu a tým pádom to je možné práve preto. Ja neviem, čo skúšaš, ak chceš algoritmus na špeciálne čísla, tak to by som ti mohol dat, na tie normalne s vačšou periódou je uvedeny v článku https://robopol.sk/blog/vylepsene-hladanie-prvocisiel2diel.

Tam je celý algoritmus.

V článku špecialne prvočísla a a v diely prvočísla- golden part maš uvedene bežne periody prvočísiel a špeciálnych, ak program nájde inú periódu ide o zmiešane číslo. Perióda sa opakuje, keď začne nový cyklus zvyškov m(i), n(i), je to tam uvedené.

Link to post
Share on other sites

Tono,

Ak chceš urbim to vo visual studiu (aj ked sa mi moc nechce :) ), ja pascal nejdem inštalovať ani to prepisovat, algoritmus je jednoduchy, aj na špecialne prvočísla. Z článkov ho možno ľahko extrahovat. Mersenove čísla majú viac ako dva miliony číslic. Teda bud sa to uloží ako pole, či string. Teda najskor by si musel vyrátat velkú mocninu a až následne by si použil špecialny algoritmus na tieto prvočísla (znova ľahko extrahovatelný z mojich stránok). No a tu je jasné, že to bude velmi účinné a všetky známe algoritmy by zlihali, myslím, že sa používa na Mesrsenove čísla Lucas - Lehmerov test. Nepoznám ho, no viem, že moj algoritmus to bude ľahko robit pojde o odčítavanie mocniny po periode.

No a k vykonnosti algoritmu, ktorý chceš preverovať (na obecné prvočísla long long integer). To by si musel urbiť veľa testov, prípad od prípadu sa to môže líšiť. No a ja nemusím testovať, pretože viem zrátat počet operacii, aby som vedel kolko by to mohlo zhruba trvat, ked poznam výpočttový výkon. tu to bude podobne ako u stavajúcich algoritmov, žiaden zázrak tu nebude. No a o komerčnom využití )no dosť pochybujem), kedže preverovať obrovské prvočísla je skôr špecialita pre RSA šifrovanie, lenže tieto čísla nebudú Mersenove, to by boli blazni.

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Similar Content

    • robopol
      By robopol
      Začal som riešiť problém obchodného cestujúceho, kto ma záujem moze kuknut uvodne članky:
      https://robopol.blogspot.com/2018/07/obchodny-cestujuci.html
      https://robopol.blogspot.com/2018/07/problem-obchodneho-cestujuceho-1-diel.html
      http://robopol.blogspot.com/2018/07/problem-obchodny-cestujuci-2-diel.html
       
      tento problem hodlam vyriesit max do konca roka, je okolo toho dost roboty to vsetko popisat
    • Pipa
      By Pipa
      Ahojte :) potrebovala by som poradiť s jednou úlohou z VŠ matematiky s ktorou si neviem poradiť. Ak by sa našiel niekto, tak rada ju rada pošlem na email. Ďakujem :)
    • game
      By game
      keď máte podobný "príklad", pridajte ho do témy, skúsime sa s ním popasovať :)
       
       
      dnes mi prišlo mailom :
       
       
      Ahojte,
       
      mala uloha aby ste sa trosku rozhybali
       
      Do prílohy sa dostanete, ak správne vyriešite úlohu.
       
      V autobuse je 7 dievčat, každé dievča má 7 tašiek. V každej taške je 7
      veľkých mačiek, každá veľká mačka má 7 mačiatok.
      Všetky mačky majú 4 nohy.
      Otázka: koľko nôh je v autobuse. Výsledný počet nôh je heslom k súboru v
      prílohe...:-)
       
      Nie je tam žiadny chyták, iba jednoduchá matematika....
       
       
      sú tri možnosti : alebo je to len haluz, a žiadna príloha tam nebude, alebo nevie počítať ten, kto to zadal, alebo ja :)
       
       
      edit: počítala som to niekoľkokrát, a počítala som aj s možnými chytákmi :)
    • robopol
      By robopol
      Už dávnejšie som narazil na jeden zaujímavý problém v spojitosti mohutnosti nekonečna. Mohutnosť nekonečna prirodzených čísiel je definovaná ako alef 0. Mohutnosť nekonečna realnych čísiel je definovana ako alef 1. Dalej sa v matematike tvrdí, že neexistuje bijekcia medzi množinou prirodzených a realnych čísiel z dôvodu väčšej mohutnosti nekonečna realnych čísiel.
       
      Zoberme si interval 0-1. Je to úsečka o velkosti 1 cm. Vieme, že každé číslo v tomto intervale sa dá zaznačiť ako "bod" s presnou polohou od začiatku "0".
       
      ak takto označíme každý takto vynesený bod celým číslom, pričom body budeme vynášať tak, že každý interval rozdelíme na dve polovice a tam vynesieme bod, tak postupným delením intervalov budeme zapĺňať takýto interval bodmi, ktoré reprezentujú čísla na tom intervale.
       
      Takýmto neustálym delením v limite zaplname celý interval bodmi, ktoré reprezentujú reálne čísla. Každému takému bodu priradimé jedno prirodzené číslo. Pokial by sme uznali, že výsledkom takéhoto delenia je nekonečný počet bodov na našom intervale, limitne by sme mali tvrdiť, že sme obsiahli všetky body na intervale. Tie body reprezentuju realne čísla z toho intervalu.
       
      No podľa matematiky sa tvrdí, že stale existujú čísla, ktoré sme neobsiahli. Ako príklad uvediem transcendentné číslo pi, či e.
       
      Cantorova diagonala:
      spočíva v tom, že majme takýto predpis priradovania čísiel:
      1-1
      1,1-2
      1,11-3
      1,111-4
      atd.
       
      ako vidiet minieme všetky prirodzené čísla na takéto priradenia pričom napr. čislo 1,2 nikdy nedosiahneme. Z čoho následne dedukujú, že nemôžeme priradiť všetkým reálnym číslam práve jedno prirodzené číslo.
       
      Ak však zvolíme iný spôsob priradzovania (pre zjednodušenie rozdelíme úsek medzi číslami na 10 rovnakých dielikov - v zmysle 10 sústavy) tak môžeme vytvoriť takéto priradzovanie:
      1-1
      1,1-2
      1,2-3
      1,3-4
      ....
      2-11
      1,11-12
      1,12-13
      1,13-14
      ...
      1,21-22
      1,22-23
      1,23-24
      ...
      1,3-31
      1,31-32
      1,32-33
      ...
      atd
       
      Tu sme našli postupnosť kde nebude chýbať ani jedno číslo v zápise 10 sústavy, ktoré by neležalo na tomto intervale. Čo vedie k opačnému záveru v matematike, že nemôžeme priradiť všetkým reálnym číslam z nejakého intervalu 1-2 práve jedno celé číslo.

Announcements


×
×
  • Create New...